Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits05 cos (π(x-[(x/2)])) d x Where [t] denotes greatest integer less than or equal to t, is equal to:
Q.
0
∫
5
cos
(
π
(
x
−
[
2
x
]
)
)
d
x
Where
[
t
]
denotes greatest integer less than or equal to
t
, is equal to:
511
161
JEE Main
JEE Main 2022
Integrals
Report Error
A
-3
100%
B
-2
0%
C
2
0%
D
0
0%
Solution:
I
=
0
∫
5
cos
(
π
x
−
π
[
2
x
]
)
d
x
⇒
I
=
0
∫
2
cos
(
π
x
)
d
x
+
2
∫
4
cos
(
π
x
−
π
)
d
x
+
4
∫
5
cos
(
π
x
−
2
π
)
d
x
⇒
I
=
[
π
s
i
n
π
x
]
0
2
+
[
π
s
i
n
(
π
x
−
π
)
]
2
4
+
[
π
s
i
n
(
π
x
−
2
π
)
]
4
5
⇒
I
=
0