If the product of two functions is given, we can integrate by using the method of integration by parts. <br/><br/> Let I=∫01x(1−x)−3/4dx<br/>=1/4x(1−x)1/4(−1)+∫1/4(1−x)1/4dx<br/>=[4x(1−x)1/4−5/44(1−x)5/4]01<br/>=[0+0−(0−516)]<br/>=516<br/><br/>
Alternate Solution: <br/><br/> Let I=∫01x(1−x)−3/4dx<br/>=∫01(1−x)[1−(1−x)]dx<br/>=∫01(1−x)x−3/4dx<br/>=∫01(x−3/4−x1/4)dx<br/>=[1/4x1/4−5/4x5/4]01<br/>=[4−54]<br/>=516<br/><br/>