Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ex ((x+2/x+4))2 dx = f(x) + arbitrary constant, then f(x) =
Q.
∫
e
x
(
x
+
4
x
+
2
)
2
d
x
=
f
(
x
)
+
arbitrary constant, then
f
(
x
)
=
2240
201
AP EAMCET
AP EAMCET 2019
Report Error
A
x
+
4
x
e
x
B
x
+
4
e
x
C
(
x
+
4
)
2
x
e
x
D
(
x
+
4
)
2
e
x
Solution:
Given,
∫
e
x
(
x
+
4
x
+
2
)
2
d
x
=
f
(
x
)
+
c
Now,
∫
e
x
(
x
+
4
x
+
2
)
2
d
x
=
∫
e
x
(
(
x
+
4
)
2
x
2
+
4
+
4
x
)
d
x
=
∫
e
x
(
x
+
4
x
+
(
x
+
4
)
2
4
)
d
x
Let
g
(
x
)
=
(
x
+
4
)
x
, then
g
′
(
x
)
=
(
x
+
4
)
2
4
=
∫
e
x
{
g
(
x
)
+
g
′
(
x
)
}
d
x
=
e
x
g
(
x
)
+
c
=
e
x
(
x
+
4
x
)
+
c
∴
f
(
x
)
=
x
+
4
x
e
x