Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ( e x ( x -1)( x - ln x )/ x 2) dx is equal to (where c is constant of integration)
Q.
∫
x
2
e
x
(
x
−
1
)
(
x
−
l
n
x
)
d
x
is equal to
(where
c
is constant of integration)
148
112
Integrals
Report Error
A
e
x
(
x
x
−
l
n
x
)
+
c
12%
B
e
x
(
x
x
−
l
n
x
+
1
)
+
c
20%
C
e
x
(
x
2
x
−
l
n
x
)
+
c
9%
D
e
x
(
x
x
−
l
n
x
−
1
)
+
c
59%
Solution:
∫
x
2
e
x
(
x
−
1
)
(
x
−
l
n
x
)
d
x
=
∫
e
x
(
x
1
−
x
2
1
)
ln
(
x
e
x
)
d
x
Put
t
=
x
e
x
=
∫
ln
t
d
t
=
(
t
ln
t
−
t
)
+
c
=
x
e
x
(
ln
(
x
e
x
)
−
1
)
+
c
=
x
e
x
(
x
−
l
n
x
−
1
)
+
c