Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ex((1-x/1+x2))2 dx is equal to
Q.
∫
e
x
(
1
+
x
2
1
−
x
)
2
d
x
is equal to
1380
246
Integrals
Report Error
A
1
+
x
2
e
x
+
C
34%
B
1
+
x
2
−
e
x
+
C
24%
C
(
1
+
x
2
)
2
e
x
+
C
28%
D
(
1
+
x
2
)
2
−
e
x
+
C
14%
Solution:
We have,
I
=
∫
e
x
(
1
+
x
2
1
−
x
)
2
d
x
=
∫
e
x
(
(
1
+
x
2
)
2
1
+
x
2
−
2
x
)
d
x
=
∫
e
x
(
1
+
x
2
1
−
(
1
+
x
2
)
2
2
x
)
d
x
Above integral is of the type
∫
e
x
(
f
(
x
)
+
f
′
(
x
)
)
d
x
∴
Solution is
e
x
f
(
x
)
+
C
⇒
I
=
e
x
(
1
+
x
2
1
)
+
C