Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ e tan -1 x(1+x+x2) ⋅ d( cot -1 x) is equal to
Q.
∫
e
t
a
n
−
1
x
(
1
+
x
+
x
2
)
⋅
d
(
cot
−
1
x
)
is equal to
14
161
Integrals
Report Error
A
−
e
t
a
n
−
1
x
+
C
B
e
t
a
n
−
1
x
+
C
C
−
x
⋅
e
t
a
n
−
1
x
+
C
D
x
⋅
e
t
a
n
−
1
x
+
C
Solution:
I
=
∫
e
t
a
n
−
1
x
(
1
+
x
+
x
2
)
⋅
(
−
1
+
x
2
1
)
d
x
=
−
∫
e
t
a
n
−
1
x
(
1
+
1
+
x
2
x
)
d
x
=
−
∫
e
t
a
n
−
1
x
d
x
−
∫
x
⋅
1
+
x
2
e
t
a
n
−
1
x
d
x
=
−
∫
e
t
a
n
−
1
x
d
x
−
x
⋅
e
t
a
n
−
1
x
+
∫
e
t
a
n
−
1
x
d
x
+
C
=
−
x
⋅
e
t
a
n
−
1
x
+
C