Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ e log ( tan x) dx is equal to :
Q.
∫
e
l
o
g
(
t
a
n
x
)
d
x
is equal to :
2298
171
Integrals
Report Error
A
log tan x + c
14%
B
log sec x + c
58%
C
tan x + c
15%
D
e
t
a
n
x
+
c
13%
Solution:
The given integral is
I
=
∫
e
l
o
g
(
t
a
n
x
)
d
x
=
∫
tan
x
d
x
=
∫
c
o
s
x
s
i
n
x
d
x
.
cos
x
=
t
⇒
−
sin
x
d
x
=
d
t
.
So,
I
=
−
∫
t
d
t
=
−
lo
g
t
+
c
=
lo
g
t
1
+
x
=
lo
g
c
o
s
x
1
+
c
=
lo
g
sec
x
+
c