Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫(dx/x(xn+1))is equal to
Q.
∫
x
(
x
n
+
1
)
d
x
is equal to
1731
235
Integrals
Report Error
A
n
1
l
o
g
(
x
n
+
1
x
n
)
+
c
59%
B
n
1
l
o
g
(
x
n
x
n
+
1
)
+
c
22%
C
l
o
g
(
x
n
+
1
x
n
)
+
c
14%
D
none of these
5%
Solution:
I
=
∫
x
(
x
n
+
1
)
d
x
=
∫
x
2
(
x
n
+
1
)
x
n
−
1
d
x
Putting
x
n
=
t
so that
n
x
n
−
1
d
x
=
d
t
,
i
.
e
.
we get
x
n
−
1
d
x
=
n
1
d
t
I
=
∫
t
(
t
−
1
)
n
1
d
t
=
n
1
∫
(
t
1
−
t
+
1
1
)
d
t
=
n
1
(
l
o
g
t
−
l
o
g
(
t
+
1
)
)
+
C
=
n
1
l
o
g
(
x
n
+
1
x
n
)
+
C