Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫(dx/1-cos x -sin x) is equal to
Q.
∫
1
−
cos
x
−
s
in
x
d
x
is equal to
15819
178
Integrals
Report Error
A
l
o
g
∣
∣
1
+
co
t
2
x
∣
∣
+
C
13%
B
l
o
g
∣
∣
1
−
t
an
2
x
∣
∣
+
C
22%
C
l
o
g
∣
∣
1
−
co
t
2
x
∣
∣
+
C
54%
D
l
o
g
∣
∣
1
+
t
an
2
x
∣
∣
+
C
11%
Solution:
Let
I
=
∫
1
−
cos
x
−
s
in
x
d
x
put
cos
x
=
1
+
t
a
n
2
2
x
1
−
t
a
n
2
2
x
an
d
s
in
x
=
1
+
t
a
n
2
2
x
2
t
an
2
x
∴
I
=
∫
1
−
(
1
+
t
a
n
2
2
x
1
−
t
a
n
2
2
x
)
−
1
+
t
a
n
2
2
x
2
t
an
2
x
d
x
=
∫
2
t
a
n
2
2
x
−
2
t
an
2
x
se
c
2
2
x
d
x
=
∫
t
a
n
2
2
x
−
t
an
2
x
2
1
se
c
2
2
x
d
x
Put
t
an
2
x
=
t
⇒
2
1
se
c
2
2
x
d
x
=
d
t
∴
I
=
∫
t
2
−
t
d
t
=
[
t
−
1
1
−
t
1
]
∫
+
C
=
l
o
g
(
t
−
1
)
−
l
o
g
t
+
C
=
l
o
g
∣
∣
t
t
−
1
+
C
∣
∣
=
l
o
g
∣
∣
1
−
co
t
2
x
∣
∣
+
C