Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ( cosn-1x/ sinn+1x)dx, (where n ≠ 0 is equal to
Q.
∫
s
i
n
n
+
1
x
c
o
s
n
−
1
x
d
x
,
(
w
h
ere
n
=
0
is equal to
2525
222
KCET
KCET 2013
Integrals
Report Error
A
n
co
t
n
x
+
C
18%
B
n
−
1
−
co
t
n
−
1
x
+
C
26%
C
n
−
co
t
n
x
+
C
43%
D
n
−
1
co
t
n
−
1
x
+
C
13%
Solution:
Let
I
=
∫
s
i
n
n
+
1
x
c
o
s
n
−
1
x
d
x
1
(
n
=
0
)
=
∫
s
i
n
n
+
1
x
c
o
s
n
−
1
x
×
s
i
n
2
x
s
i
n
2
x
d
x
=
∫
s
i
n
n
−
1
x
c
o
s
n
−
1
x
⋅
cosec
2
x
d
x
=
∫
cot
n
−
1
x
⋅
cosec
2
x
d
x
Let
t
=
cot
x
⇒
d
t
=
−
cosec
2
x
d
x
=
∫
t
n
−
1
(
−
d
t
)
=
−
(
n
t
n
)
+
C
=
−
n
1
cot
n
x
+
C
(
∵
t
=
cot
x
)