Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ( cos 2x - cos 2θ/ cos x - cos θ) dx is equal to
Q.
∫
c
o
s
x
−
c
o
s
θ
c
o
s
2
x
−
c
o
s
2
θ
d
x
is equal to
3796
193
KCET
KCET 2017
Integrals
Report Error
A
2
(
sin
x
+
x
cos
θ
)
+
C
42%
B
2
(
sin
x
−
x
cos
θ
)
+
C
25%
C
2
(
sin
x
+
2
x
cos
θ
)
+
C
22%
D
2
(
sin
x
−
2
x
cos
θ
)
+
C
11%
Solution:
Let
I
=
∫
c
o
s
x
−
c
o
s
θ
c
o
s
2
x
−
c
o
s
2
θ
d
x
=
∫
c
o
s
x
−
c
o
s
θ
(
2
c
o
s
2
x
−
1
)
−
(
2
c
o
s
2
θ
−
1
)
d
x
=
2
∫
c
o
s
x
−
c
o
s
θ
c
o
s
2
x
−
c
o
s
2
θ
d
x
=
2
∫
c
o
s
x
−
c
o
s
θ
(
c
o
s
x
−
c
o
s
θ
)
(
c
o
s
x
+
c
o
s
θ
)
d
x
=
2
∫
(
cos
x
+
cos
θ
)
d
x
=
2
[
sin
x
+
x
cos
θ
]
+
C