Let I=∫(2ex−54ex−25)dx =∫2ex−54exdx−∫2ex−525dx =4∫2ex−5exdx−25∫2−5e−xe−xdx
Put 2ex−5=u and 2−5e−x=v ⇒2exdx=du
and 5e−xdx=dv ⇒exdx=2du and e−xdx=5dv ∴I=4∫2udu−25∫5vdu =2logu−5logv+c =2log(2ex−5)−5log(2−5e−x)+c =2log(2ex−5)−5log(ex2ex−5)+c =2log(2ex−5)−5log(2ex−5)+5logex+c =−3log(2ex−5)+5x+c ⇒I=5x−3log(2ex−5)+c
But it is given I=Ax+Blog(2ex−5)+c ∴A=5 and B=−3