Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫32x3(log x)2dx is equal to
Q.
∫
32
x
3
(
l
o
gx
)
2
d
x
is equal to
2388
183
Integrals
Report Error
A
8
x
4
(
l
o
gx
)
2
+
C
18%
B
x
4
{
8
(
l
o
gx
)
2
−
4
l
o
gx
+
1
}
+
C
55%
C
x
4
{
8
(
l
o
gx
)
2
−
4
l
o
gx
}
+
C
26%
D
x
3
{
(
l
o
gx
)
2
+
2
l
o
gx
}
+
C
2%
Solution:
∫
32
x
3
(
l
o
gx
)
2
d
x
32
{
(
l
o
g
x
2
)
4
x
4
−
∫
2
l
o
gx
⋅
x
1
⋅
4
x
4
d
x
}
+
C
′
=
8
x
4
(
l
o
gx
)
2
−
16
∫
x
3
l
o
gx
d
x
+
C
′
=
8
x
4
(
l
o
gx
)
2
−
16
{
l
o
gx
⋅
4
x
4
−
∫
x
1
⋅
4
x
4
d
x
}
+
C
′′
=
8
x
4
(
l
o
gx
)
2
−
4
x
4
l
o
gx
+
4
∫
x
3
d
x
+
C
′′
=
8
x
4
(
l
o
gx
)
2
+
4
x
4
l
o
gx
+
x
4
+
C
=
x
4
[
8
(
l
o
gx
)
2
−
4
l
o
gx
+
1
]