Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int32x^{3}\left(log x\right)^{2}dx$ is equal to

Integrals

Solution:

$\int32x^{3}\left(log x\right)^{2}dx $

$ 32\left\{\left(log x^{2}\right) \frac{x^{4}}{4}-\int2log x \cdot\frac{1}{x}\cdot\frac{x^{4}}{4}dx\right\}+C' $

$ =8x^{4}\left(logx\right)^{2}-16\int x^{3}log x dx+C' $

$= 8x^{4}\left(log x\right)^{2}-16\left\{logx \cdot\frac{x^{4}}{4}-\int\frac{1}{x}\cdot\frac{x^{4}}{4}dx \right\}+C'' $

$ = 8x^{4}\left(log x\right)^{2}-4x^{4}logx +4 \int x^{3}dx +C'' $

$ =8x^{4}\left(logx\right)^{2} +4x^{4}logx+x^{4}+C$

$ = x^{4 }\left[8\left(logx\right)^{2}-4logx +1\right]$