Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ (3 e x +5 e - x /4 e x -5 e - x ) dx = Ax + B ln |4 e 2 x -5|+ C then
Q.
∫
4
e
x
−
5
e
−
x
3
e
x
+
5
e
−
x
d
x
=
A
x
+
B
ln
∣
∣
4
e
2
x
−
5
∣
∣
+
C
then
383
116
Integrals
Report Error
A
A
=
−
1
,
B
=
−
7/8
;
C
=
const. of integration
B
A
=
1
,
B
=
7/8
;
C
=
const. of integration
C
A
=
−
1/8
,
B
=
7/8
;
C
=
const. of integration
D
A
=
−
1
,
B
=
7/8
;
C
=
const. of integration
Solution:
I
=
∫
4
e
x
−
5
e
−
x
3
e
x
+
5
e
−
x
d
x
=
∫
4
e
2
x
−
5
3
e
2
x
+
5
d
x
Let
3
e
2
x
+
5
=
A
(
4
e
2
x
−
5
)
+
B
(
8
e
2
x
)
∴
4
A
+
8
B
=
3
and
5
A
=
5
⇒
A
=
−
1
and
5
A
=
5
⇒
A
=
−
1
∴
B
=
8
7
∴
I
=
A
x
+
B
ln
(
4
e
2
x
−
5
)
+
C
when
A
=
−
1
and
B
=
8
7