Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ 2 mx ⋅ 3 nx dx when m , n ∈ N is equal to
Q.
∫
2
m
x
â‹…
3
n
x
d
x
when
m
,
n
∈
N
is equal to
98
112
Integrals
Report Error
A
mλn
2
+
nλn
3
2
m
x
+
3
n
x
​
+
c
22%
B
mλn
2
+
nλn
3
e
(
m
/
n
2
+
nλn
3
)
x
​
+
c
22%
C
λn
(
2
m
â‹…
3
n
)
2
m
x
â‹…
3
n
x
​
+
c
89%
D
mλn
2
+
nλn
3
(
mn
)
â‹…
2
x
â‹…
3
x
​
+
c
44%
Solution:
2
m
x
=
e
m
x
l
n
2
and
3
n
x
=
e
n
x
l
n
3
.