Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits2-2 |x cos π x | dx is equal to
Q.
−
2
∫
2
∣
x
cos
π
x
∣
d
x
is equal to
8317
207
KCET
KCET 2018
Integrals
Report Error
A
π
8
22%
B
π
4
31%
C
π
2
31%
D
π
1
17%
Solution:
I
=
−
2
∫
2
∣
x
cos
π
x
∣
d
x
=
2
0
∫
2
∣
x
cos
π
x
∣
d
x
=
2
[
0
∫
1/2
(
x
cos
π
x
)
d
x
−
1/2
∫
3/2
(
x
cos
π
x
)
d
x
+
3/2
∫
2
(
x
cos
π
x
)
d
x
]
Now
∫
x
cos
π
x
d
x
=
π
x
s
i
n
π
x
+
π
2
c
o
s
π
x
∴
I
=
2
[
(
2
π
1
−
π
2
1
)
−
(
−
2
π
3
−
2
π
1
)
+
(
π
2
1
+
2
π
3
)
]
=
2
[
2
π
1
−
π
2
1
+
2
π
3
+
2
π
1
+
π
2
1
+
2
π
3
]
=
2
(
2
π
8
)
=
π
8