Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ((1+x)ex/ sin2 (xex)) dx is equal to
Q.
∫
s
i
n
2
(
x
e
x
)
(
1
+
x
)
e
x
d
x
is equal to
2079
215
KEAM
KEAM 2014
Integrals
Report Error
A
−
cot
(
e
x
)
+
C
6%
B
tan
(
x
e
x
)
+
C
19%
C
tan
(
e
x
)
+
C
13%
D
cot
(
x
e
x
)
+
C
16%
E
−
cot
(
x
e
x
)
+
C
16%
Solution:
Let
I
=
∫
s
i
n
2
(
x
e
x
)
(
1
+
x
)
e
x
d
x
Put
x
e
x
=
t
⇒
(
1
⋅
e
x
+
x
⋅
e
x
)
d
x
=
d
t
⇒
(
1
+
x
)
e
x
d
x
=
d
t
∴
I
=
∫
s
i
n
2
t
d
t
=
∫
cose
c
2
t
d
t
=
−
cot
t
+
C
=
−
cot
(
x
e
x
)
+
C