1+sinθ−sin2θ−sin3θ=(1+sinθ)(1−sin2θ)=1+sinθcosθ
With x=sinθ, the given integral is ∫2x−11+xdx=∫2x2+x−11+xdx=41∫2x2+x−14x+1dx+423∫(x+41)2−169dx =212x2+x−1+423log(x+41+(x+41)2−169)+C =212x2+x−1+423log(4x+1+222x2+x−1)+C,
Which on substitution for x gives (1). ]