sin3xsin(x+α)=sin3x(sinxcosα+cosxsinα) =sin4x(cosα+cotxsinα) I=∫sin3xsin(x+α)1dx =∫sin2xcosα+cotxsinα1dx =∫cosα+cotxsinαcosec2xdx
Putting cosα+cotxsinα=t
and −cosec2xsinαdx=dt, we have I=∫−sinαt1dt=−sinα1∫t−1/2dt =−sinα1(1/2t1/2)+C ⇒I=−2cosecαt+C =−2cosecα(cosα+cotxsinα)1/2+C