Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ √(1- cos x/ cos α- cos x) d x, where 0< α< x < π, is equal to
Q.
∫
c
o
s
α
−
c
o
s
x
1
−
c
o
s
x
d
x
, where
0
<
α
<
x
<
π
, is equal to
144
175
Integrals
Report Error
A
2
ln
(
cos
2
α
−
cos
2
x
)
+
c
B
2
ln
(
cos
2
α
−
cos
2
x
)
+
c
C
2
2
ln
(
cos
2
α
−
cos
2
x
)
+
c
D
−
2
sin
−
1
(
c
o
s
2
α
c
o
s
2
x
)
+
c
Solution:
I
=
∫
c
o
s
α
−
c
o
s
x
1
−
c
o
s
x
d
x
0
<
α
<
x
<
π
=
∫
2
c
o
s
2
2
α
−
1
−
2
c
o
s
2
2
x
+
1
2
s
i
n
2
x
d
x
=
∫
c
o
s
2
2
α
−
c
o
s
2
2
x
s
i
n
2
x
d
x
put
cos
2
x
=
t
⇒
−
2
1
sin
2
x
d
x
=
d
t
⇒
I
=
∫
c
o
s
2
2
α
−
t
2
−
2
d
t
=
−
2
sin
−
1
(
c
o
s
2
α
c
o
s
2
x
)
+
C