Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫-1(3/2)|x sin (π x)| d x=
Q.
∫
−
1
2
3
∣
x
sin
(
π
x
)
∣
d
x
=
1830
168
TS EAMCET 2019
Report Error
A
π
1
−
π
2
1
B
π
2
+
π
2
1
C
π
3
−
π
2
1
D
π
3
+
π
2
1
Solution:
Let
I
=
−
1
∫
3/2
∣
x
sin
(
π
x
)
∣
d
x
I
=
−
1
∫
1
x
sin
π
x
d
x
−
1
∫
3/2
x
sin
π
x
d
x
I
=
2
0
∫
1
x
sin
π
x
d
x
−
1
∫
3/2
x
sin
p
i
x
d
x
I
=
2
[
π
−
x
c
o
s
π
x
+
π
2
s
i
n
π
x
]
0
1
−
[
π
−
x
c
o
s
π
x
+
π
2
s
i
n
π
x
]
1
3/2
I
=
2
[
(
π
1
+
0
)
−
(
0
)
]
−
[
0
−
π
2
1
−
π
1
]
I
=
π
3
+
π
2
1