Put x=sinθ ⇒cosθdθ=dx
When x=0,θ=0 and when x=21​,θ=6π​ ∴I=0∫6π​​(1+sin2θ)cosθcosθdθ​ =0∫6π​​sec2θ+tan2θsec2θ​dθ =0∫6π​​1+(2​tanθ)2sec2θ​dθ =2​1​0∫6π​​1+(2​tanθ)22​sec2θ​dθ =2​1​tan−1(2​tanθ)∣∣​06π​​=2​1​tan−1(32​​)