Let I=∫0πsin4x+cos4xcos4xdx I=2∫0π/2sin4x+cos4xcos4xdx… (i) [∵∫02af(x)dx=2∫0af(x)dx, if f(2a−x)=f(x)] ⇒I=2∫0π/2sin4(2π−x)+cos4(2π−x)cos4(2π−x)dx ⇒I=2∫0π/2cos4x+sin4xsin4xdx...(i)
On adding Eqs. (i) and (ii), we get 2I=2∫0π/2sin4x+cos4xsin4x+cos4xdx =2∫0π/2dx=2[x]0πr=2(2π−0) ⇒2I=π ⇒I=2π