Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫0π /2 cos 5( (x/2) ) sin x dx is equal to
Q.
∫
0
π
/2
cos
5
(
2
x
)
sin
x
d
x
is equal to
1418
183
Jharkhand CECE
Jharkhand CECE 2010
Report Error
A
7
2
(
1
−
8
2
1
)
B
−
7
4
(
1
−
8
2
1
)
C
7
4
(
1
−
8
2
1
)
D
−
7
2
(
1
−
8
2
1
)
Solution:
∫
0
π
/2
cos
5
(
2
x
)
sin
x
d
x
=
∫
0
π
/2
cos
5
(
2
x
)
⋅
2
sin
(
2
x
)
cos
(
2
x
)
d
x
=
2
∫
0
π
/2
sin
(
2
x
)
cos
6
(
2
x
)
d
x
By putting
cos
2
x
=
t
,
−
2
1
sin
2
x
d
x
=
d
t
sin
2
x
d
x
=
−
2
d
t
sin
2
x
d
x
=
−
2
d
t
The given integral becomes
2
∫
0
π
/2
t
6
(
−
2
)
d
t
=
−
4
∫
0
π
/2
t
6
d
t
=
−
4
[
7
t
7
]
0
π
/2
=
−
7
4
[
cos
7
(
2
x
)
]
0
π
/2
=
7
−
4
[
cos
7
(
4
π
)
−
cos
7
(
0
)
]
=
7
−
4
[
(
2
1
)
7
−
1
]
=
7
4
[
1
−
8
2
1
]