From the figure shown here,
we have ∠A=2π/3 and ∠B=∠C.
Now, 32π+2∠B=π ∠B=6π r=3
Now, tan60∘=AEIE 3=AE3 ⇒AE=1=AF tan150∘=BEIE 1+311−31=BE3 BE=(2−1)3(2+1) =23(3+1)2=23(3+1+23) BE=3(2+3)=3+23 AB=1+3+23=4+23
Now, the area of △ABC is 21(4+23)(4+23)sin120∘=21(4+23)2⋅23 =43(4+23)2 =3(4+3+43)=73+12