The van der waal’s equation of state is (P+V2a)(V−b)=RT
or P=V−bRT−V2a
At the critical point, P=Pc,V=Vc and T=Tc ∴Pc=Vc−bRT−Vc2a ....(i)
At the critical point on the isothermal, dVcdPc=0 ∴0=(Vc−b)2−RTc+Vc32a
or ∴0=(Vc−b)2RTc+Vc32a ......(ii)
Also at critical point, dVc2d2Pc=0 ∴0=(Vc−b)32RTc−Vc46a
or (Vc−b)32RTc=Vc46a .....(iii) 21(Vc−b)=31VcorVc=3b ....(iv)
Putting this value in (ii), we get 4b2RTc=27b32aorTc=27bR8a ....(v)
Putting the values of Vc and Tc in (i), we get
Pc=2bR(27bR8a)−9b2a=27b2a