In a △ABC, it is given that, r=r1−r2−r3 ⇒sΔ=s−aΔ−s−bΔ−s−cΔ ⇒s−b1+s−c1=s−a1−s1 ⇒(s−b)(s−c)2s−b−c=s(s−a)a ⇒s(s−a)=s2−(b+c)s+bc ⇒s2−sa=s2−(b+c)s+bc ⇒(b+c−a)s=bc ⇒(b+c)2−a2=2bc ⇒b2+c2+2bc−a2=2bc ⇒b2+c2=a2 ∴△ABC is the right angled triangle with angle A=90∘,
so 2R=a.