In △ABC,R=865,rr1=42,r1−r=6.5
We know that, r=sΔ,r1=s−aΔ,r2=s−bΔ,r3=s−cΔ ∵rr1=42 ⇒s(s−a)Δ2=42 and s−aΔ−sΔ=6.5 s(s−a)Δ2=42 and s(s−a)Δa=6.5 ⇒Δa=426.5… (i)
Also, r1+r2+r3−r=4R ⇒r2+r3=4R−(r1−r) s−bΔ+s−cΔ=265−1065=26 (s−b)(s−c)Δ(2s−(b+c)=26 s(s−a)(s−b)(s−c)Δa=s(s−a)26 ⇒Δa=s(s−a)26… (ii)
From Eqs. (i) and (ii), we get 426.5=s(s−c)26 ⇒s(s−a)=6526×42×10=168