Applying C1→C1−C2,C2→C2−C3,we get Δ=∣∣0cot2A−cot2Btan2B−tan2A0cot2B−cot2Ctan2C−tan2B1cot2Ctan2A+tan2B∣∣ =∣∣0cot2A−cot2Bcot2Acot2Bcot2A−cot2B0cot2B−cot2Ccot2Bcot2Ccot2B−cot2C1cot2Ctan2A+tan2B∣∣ =(cot2A−cot2B)(cot2B−cot2C) ×∣∣01tan2Atan2B01tan2Btan2C1cot2Ctan2Atan2B∣∣ =(cot2A−cot2B)(cot2B−cot2C)(tan2C−tan2A)tan2B
SinceΔ=0,we have cot2A=cot2B or cot 2B=cot2C or tan 2A=tan2C
Hence, the triangle is definitely isosceles