Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In triangle A B C, if |1 a b 1 c a 1 b c|=0 then the value of sin 2 A+ cos 2 B+ tan 2 C is equal to
Q. In triangle
A
BC
, if
∣
∣
1
1
1
a
c
b
b
a
c
∣
∣
=
0
then the value of
sin
2
A
+
cos
2
B
+
tan
2
C
is equal to
384
104
Determinants
Report Error
A
2
B
4
C
2
9
D
2
11
Solution:
∣
∣
0
0
1
a
−
c
c
−
b
b
b
−
c
a
−
c
c
∣
∣
=
0
(
a
−
c
)
2
+
(
b
−
c
)
(
b
−
a
)
=
0
a
2
+
c
2
−
a
c
+
b
2
−
ab
−
b
c
=
0
(
a
−
b
)
2
+
(
b
−
c
)
2
+
(
c
−
a
)
2
=
0
∴
a
=
b
=
c
⇒
triangle is equilateral.
∴
sin
2
A
+
cos
2
B
+
tan
2
C
⇒
∘
=
4