In ΔABC,a3cos(B−C) =a3(2sin(B+C)2sin(B+C)cos(B−C)) =a3(2sin(B+C)sin2B+sin2C)) =a3(2sin(π−A)2sinBcosB+2sinccosC) =a3(sinAsinBcosB+sinccosC) =a3(akbkcosB+cKcosC) ∴a3cos(B−C)=a2bcosB+a2ccosC...(i)
Similarly, b3cos(C−A)=b2ccosC+b2acosA...(ii)
and c3cos(A−B)=c2acosA+c2bcosB...(iii)
Adding Eqs. (i), (ii) and (iii), we get a3cos(B−C)+b3cos(C−A)+c3cos(A−B) =a2bcosB+a2ccosC+b2ccosC+b2acosA+c2acosA+c2bcosB =ab(acosB+bcosA)+ac(acosC+ccosA)+bc(bcosC+ccosB) =abc+abc+abc=3abc