Given, ABCDEF is a regular hexagon of side length 1. ABQR and AFPS is a square of each side length also 1 . ADCDEF is a regular hexagon ∴∠FAB=120∘
In square ABQR, AB=BQ=1 AQ is a diagonal of square ∴AQ=AB2+BQ2=2 ⇒∠BAS=∠FAB−∠FAS =120∘−90∘=30∘ ⇒∠SAR=∠BAR−∠BAS =90∘−30∘=60∘ ⇒∠ASR=60∘ [∵△ARS is an equilateral triangle ] ⇒∠RSP=∠ASP−∠ASR =90∘−60∘=30∘ ⇒∠FAB=∠FAP+∠PAQ+∠QAB ⇒120∘=45∘+∠PAQ+45∘ [∵∠FAP=∠QAB=45∘ FA=FP and AB=BQ] ∴∠PAQ=30∘ ∴ Area of △RSP Area of △PAQ=21×RS×PS×sin30∘21×AQ×AP×sin30∘ =12×2=2 [∵AQ=AP=2,RS=PS=1]