Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In the expansion of (x3-(1/x2))n, n ∈ N, if the sum of the coefficients of x5 and x10 is 0 , then n is :
Q. In the expansion of
(
x
3
−
x
2
1
)
n
,
n
∈
N
, if the sum of the coefficients of
x
5
and
x
10
is 0 , then
n
is :
1041
161
Binomial Theorem
Report Error
A
25
B
20
C
15
D
None of these
Solution:
(
x
3
−
x
2
1
)
n
General term
=
r
!
(
n
−
r
)!
n
!
(
−
1
)
n
−
r
x
5
r
−
2
n
If
5
r
−
2
n
=
5
, then
5
r
=
2
n
+
5
⇒
r
=
5
2
n
+
1
If
5
r
−
2
n
=
10
, then
5
r
=
2
n
+
10
⇒
r
=
5
2
n
+
2
Let
n
=
5
k
Now
(
2
k
+
1
)!
(
3
k
−
1
)!
5
k
!
−
(
2
k
+
2
)!
(
3
k
−
2
)!
5
k
!
=
0
⇒
3
k
−
1
1
−
2
k
+
2
1
=
0
⇒
k
=
3
⇒
n
=
15