Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In the expansion of (1+x+x2+x3)6, the coefficient of x14 is
Q. In the expansion of
(
1
+
x
+
x
2
+
x
3
)
6
,
the coefficient of
x
14
is
4670
185
KEAM
KEAM 2007
Binomial Theorem
Report Error
A
130
B
120
C
128
D
125
E
115
Solution:
(
1
+
x
+
x
2
+
x
3
)
6
=
(
1
+
x
)
6
(
1
+
x
2
)
6
=
(
6
C
0
+
6
C
1
x
+
6
C
2
x
2
+
6
C
3
x
3
+
6
C
4
x
4
+
6
C
5
x
5
+
6
C
6
x
6
)
×
(
6
C
0
+
6
C
1
x
2
+
6
C
2
x
4
+
6
C
3
x
6
+
6
C
4
x
8
+
6
C
5
x
10
+
6
C
6
x
12
)
∴
Coefficient of
x
14
in
(
1
+
x
+
x
2
+
x
3
)
6
=
6
C
2
.
6
C
6
+
6
C
4
.
6
C
5
+
6
C
6
.
6
C
4
=
2
!
4
!
6
!
.
0
!
6
!
6
!
+
4
!
2
!
6
!
.
5
!
1
!
6
!
+
0
!
6
!
6
!
.
2
!
4
!
6
!
=
15
+
90
+
15
=
120