Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In the expansion of ((1/x2)-x3)n n ∈ N, if the sum of the coefficients of x5 and x10 is 0, then n is:
Q. In the expansion of
(
x
2
1
−
x
3
)
n
n
∈
N
,
if the sum of the coefficients of
x
5
and
x
10
is
0
,
then
n
is:
2484
195
Binomial Theorem
Report Error
A
25
B
20
C
15
D
None of these
Solution:
(
x
2
1
−
x
3
)
n
T
r
+
1
=
r
!
(
n
−
r
)!
n
!
(
−
1
)
n
−
r
x
5
r
−
2
n
If
5
r
−
2
n
=
5
,
then
5
r
=
2
n
+
5
r
=
5
2
n
+
1
If
5
r
−
2
n
=
10
,
then
5
r
=
2
n
+
10
r
=
5
2
n
+
2
Let
n
=
5
k
According to question
(
2
k
+
1
)!
(
3
k
−
1
)!
5
k
!
−
(
2
k
+
2
)!
(
3
k
−
2
)!
5
k
!
=
0
⇒
3
k
−
1
1
−
2
k
+
2
1
=
0
⇒
k
=
3
⇒
n
=
15