Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In the binomial expansion of (1+x)15 the coefficients of xr and xr+3 are equal Then r is
Q. In the binomial expansion of
(
1
+
x
)
15
the coefficients of
x
r
and
x
r
+
3
are equal Then
r
is _______
4089
175
KCET
KCET 2010
Binomial Theorem
Report Error
A
4
7%
B
6
66%
C
8
15%
D
7
12%
Solution:
Given,
(
1
+
x
)
15
Now,
T
r
+
1
=
15
C
r
x
r
and
T
(
r
+
3
)
+
1
=
15
C
r
+
3
x
r
+
3
According to question
coefficient of
x
r
=
coefficient of
x
r
+
3
⇒
15
C
r
=
15
C
r
+
3
⇒
r
!
(
15
−
r
)!
15
!
=
(
r
+
3
)!
(
12
−
r
)!
15
!
⇒
(
15
−
r
)
(
14
−
r
)
(
13
−
r
)
1
=
(
r
+
3
)
(
r
+
2
)
(
r
+
1
)
1
⇒
(
r
+
1
)
(
r
+
2
)
(
r
+
3
)
=
(
15
−
r
)
⇒
(
r
2
+
3
r
+
2
)
(
r
+
3
)
=
(
210
−
29
r
+
r
2
)
⇒
r
3
+
3
r
2
+
2
r
+
3
r
2
+
9
r
+
6
=
2930
−
377
r
+
13
r
2
−
210
r
+
29
r
2
−
r
3
⇒
2
r
3
−
36
r
2
+
598
r
−
2924
=
0
⇒
r
3
−
18
r
2
+
299
r
−
1462
=
0
⇒
(
r
−
6
)
(
r
2
−
12
r
+
227
)
=
0
⇒
r
=
6
and
r
2
−
12
r
+
227
=
0
gives imaginary roots.
Alternate Method
15
C
r
=
15
C
r
+
3
⇒
r
+
(
r
+
3
)
=
15
(
∵
n
C
x
=
n
C
y
)
⇒
2
r
+
3
=
15
⇒
x
+
y
=
n
⇒
2
r
=
12
⇒
r
=
6