Let (1−2x)2(1−3x)1=1−2xA+(1−2x)2B+1−3xC ∴1=A(1−2x)(1−3x)+B(1−3x)+C(1−2x)2 ...(i)
Putting x=31 in (i), we get 1=0+0+C(1−32)2⇒1=91C⇒C=9
Putting x=21 in (i), we get ∴1=B(1−23)⇒−21B=1⇒B=−2
Putting x=0 in (i), we get 1=A+B+C A=1−B−C=1+2−9=−6 ∴(1−2x)2(1−3x)1=1−2x−6−(1−2x)22+1−3x9
One of the terms is 1−2x−6