Given, R=4π
Also, P+Q+R=π ⇒P+Q+4π=π ⇒P+Q=43π ⇒3P+3Q=4π ⇒tan(3P+3Q)=tan(4π) ⇒1−tan3Ptan3Qtan3P+tan3Q=1....(i)
Since, tan3P and tan3Q are the
roots of the equation ax2+bx+c=0 ∴tan3P+tan3Q=−ab
and tan3P⋅tan3Q=ac ∴ From Eq. (i), 1−ac−ab=1 ⇒a−c−b=1 ⇒a+b=c