sin2A+sin2B=sin2C ⇒a2+b2=c2 (Sine Rule) A(△ABC)=21ab…(1)
From sine rule sinAa=sinBb=sinCc ⇒sinAa=sinBb=110 ⇒a=10sinA,b=10sinB
Using equation (1) A(△ABC)=21(10sinA)(10sinB) =50sinAsinB
But maximum value of sinAsinB=21 ∴ Maximum value of A(△ABC)=50×21=25
OR ∠C=90∘⇒ABC is right angled triangle ∴ Area of △ is maximum when it is 45∘−45∘−90∘△. ∴A(△ABC)=21×52×52=25