From the figure, x1+x2=2l,y1+y2=0,z1+z2=0, x2+x3=0,y2+y3=2m,z2+z3=0
and x1+x3=0,y1+y3=0,z1+z3=2n
On solving, we get x1=l,x2=l,x3=−l,
and y1=−m,y2=m,y3=m z1=n,z2=−n,z3=n ∴ Coordinates are A(l,−m,n),B(l,m,−n) and C(−l,m,n) ∴l2+m2+n2AB2+BC2+CA2 =l2+m2+n2(4m2+4n2)+(4l2+4n2)+(4l2+4m2) =8