Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In any triangle A B C, ((b2-c2)/a2) is equal to
Q. In any
△
A
BC
,
a
2
(
b
2
−
c
2
)
is equal to
154
205
Trigonometric Functions
Report Error
A
s
i
n
(
B
−
C
)
s
i
n
(
B
+
C
)
B
s
i
n
(
B
+
C
)
s
i
n
(
B
−
C
)
C
sin
(
B
+
C
)
D
sin
(
B
−
C
)
Solution:
∵
a
2
(
b
2
−
c
2
)
=
K
2
s
i
n
2
A
K
2
s
i
n
2
B
−
K
2
s
i
n
2
C
=
s
i
n
2
A
(
s
i
n
2
B
−
s
i
n
2
C
)
=
s
i
n
2
(
B
+
C
)
s
i
n
(
B
+
C
)
⋅
s
i
n
(
B
−
C
)
{
∵
∴
(
A
+
B
+
C
)
=
π
⇒
A
=
π
−
(
B
+
C
)
sin
A
=
sin
[
π
−
(
B
+
C
)]
=
sin
(
B
+
C
)
}
=
s
i
n
(
B
+
C
)
s
i
n
(
B
−
C
)
Hence,
s
i
n
(
B
+
C
)
s
i
n
(
B
−
C
)
=
a
2
(
b
2
−
c
2
)