Q.
In an acute triangle ABC, if the coordinates of orthocentre 'H' are (4, b), centroid 'G' are
(b, 2b - 8) and circumcentre 'S' are (- 4, 8), then 'b' can not be
As H, G and C are collinear ∴∣∣4b−4b2b−88111∣∣=0⇒∣∣4b−4−(b+4)bb−816−2b100∣∣=0 ⇒(b−4)(16−2b)+(b+4)(b−8)=0 ⇒2(b−4)(8−b)+(b+4)(b−8)=0 ⇒(8−b)[(2b−8)−(b+4)]=0 ⇒(8−b)(b−12)=0
Hence b = 8 or 12, which is wrong because collinearity does not explain centroid, orthocentre and circumcentre ∴3−8+4=b⇒b=3−4
and 316+b=2b−8⇒b=8
But no common value of ' b ' is possible ⇒A,B,C,D