Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In an acute triangle ABC, if the coordinates of orthocentre 'H' are (4, b), centroid 'G' are (b, 2b - 8) and circumcentre 'S' are (- 4, 8), then 'b' can not be

Straight Lines

Solution:

As H, G and C are collinear
$\therefore \begin{vmatrix}4 & b & 1 \\ b & 2 b -8 & 1 \\ -4 & 8 & 1\end{vmatrix}=0 \Rightarrow\begin{vmatrix}4 & b & 1 \\ b -4 & b -8 & 0 \\ -( b +4) & 16-2 b & 0\end{vmatrix}=0$
$\Rightarrow (b - 4)(16 - 2b) + (b + 4)(b - 8) = 0$
$\Rightarrow 2(b - 4)(8 - b) + (b + 4)(b - 8) = 0$
$\Rightarrow (8 - b)[(2b - 8) - (b + 4)] = 0$
$\Rightarrow (8 - b)(b - 12) = 0$
Hence b = 8 or 12, which is wrong because collinearity does not explain centroid, orthocentre and circumcentre
$\therefore \frac{-8+4}{3}=b \Rightarrow b=\frac{-4}{3}$
and $ \frac{16+b}{3}=2 b-8 \Rightarrow b=8$
But no common value of ' $b$ ' is possible $\Rightarrow A , B , C , D$