Given that, a=2
In ΔABC,B=tan−1(21) C=tan−1(31)
We know that in ΔABC, A+B+C=π ⇒A=π−tan−1(21)−tan−1(31) ⇒A=π−tan−1(1−6121+31) ⇒A=π−tan−1(5/65/6)=π−tan−1(1) ⇒A=π−tan−1(tan4π) ⇒A=π−4π⇒A=43π
Now, sinA=sin43π =sin135∘=cos45∘=21 sinB=51 (∵tanB=21)
Now, by sine law sinAa=sinBb b=a⋅sinAsinB=2⋅2151=522
Hence, (A,b)=43π,522