Q.
In a triangle XYZ, let x,y,z be the lengths of sides opposite to the angles X,Y,Z, respectively, and 2s=x+y+z. If 4s−x=3s−y=2s−z and area of incircle of the triangle XYZ is 38π, then
4s−x=3s−y=2s−z=k (Let) ⇒x=s−4k,y=s−3k,z=s−2k
Now 2s=x+y+z=3s−9k ∴k=9s
Area of triangle Δ=s(s−x)(s−y)(s−z) =s⋅4k⋅3k⋅2k=24729s4 =9232s2
Area of incircle πr2=38π ∴r=232=sΔ=9322s ∴s=9 and k=1 ∴ Area of triangle Δ=9322×81=66 R=4Δxyz=4×665×6×7=24356 sin2Xsin2Ysin2Z =yz(s−y)(s−z)(s−x)(s−z)(s−x)(s−y) =xyz(s−x)(s−y)(s−z) =5×6×74×3×2=354 sin2(2X+Y)=21−cos(X+Y) =21−cos(π−Z)=21+cosZ =21+21(2xyx2+y2−z2) =21+21(2×5×625+36−49) =106=53