Q.
In a triangle PQR,∠R2π. If tan(2P) and tan(2Q) are the roots of ax2+bx+c=0,a=0, then :
1667
185
AIEEEAIEEE 2005Complex Numbers and Quadratic Equations
Report Error
Solution:
If α and β are the roots of the equation ax+hx+c=0, then α+β=a−b and αβ=ac.
Since, tan(2P) and tan(2Q) are roots of equation ax2+bx+c=0. ∴tan2P+tan2Q=−ab
and tan2Ptan2Q=ac
Also, 2P+2Q+2R=2π
(As P,Q,R are angles of a triangle) ⇒2P+Q=2π−2R⇒2P+Q=4π
Now, tan(2P+2Q)=1 ⇒1−tan2Ptan2Qtan2P+tan2Q=1 ⇒1−ac−ab=1⇒−ab=1−ac ⇒−b=a−c⇒c=a+b Alternate Solution ∴∠R=2π ⇒∠P+∠Q=2π ⇒2∠P=4π−2∠Q ∴tan(2P)=tan(4π−2Q) =1+tan4πtan2Qtan4π−tan2Q ⇒tan2P+tan2Ptan2Q=1−tan2Q ⇒tan2P+tan2Q=1−tan2Ptan2Q ⇒−ab=1−ac⇒−b=a−c ⇒c=a+b