It is given that, tan (P / 2) and tan (Q / 2) are the roots of
the quadratic equation ax2+bx+c=0
and ∠R=π/2 ∴ tan ( P / 2) + tan (Q/ 2) = - b / a
and tan (P / 2) tan (Q / 2) = c/a
Since, P + Q + R = 180∘ ⇒P+Q=90∘ ⇒2P+Q=45∘ ⇒tan(2P+Q)=tan45∘ ⇒1−tan(P/2)tan(Q/2)tan(P/2)+tan(Q/2)=1⇒1−c/a−b/a=1 ⇒aa−c−b/a=1⇒a−c−b=1 ⇒−b=a−c⇒a+b=c