Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In a triangle ABC, if ( cos A / a )=( cos B / b )=( cos C / c ) and the side a =2, then find area of the triangle.
Q. In a
△
A
BC
, if
a
c
o
s
A
=
b
c
o
s
B
=
c
c
o
s
C
and the side
a
=
2
, then find area of the triangle.
152
169
Trigonometric Functions
Report Error
Answer:
1.73
Solution:
a
c
o
s
A
=
b
c
o
s
B
=
c
c
o
s
C
⇒
k
s
i
n
A
c
o
s
A
=
k
s
i
n
B
c
o
s
B
=
k
s
i
n
C
c
o
s
C
⇒
cot
A
=
cot
B
=
cot
C
⇒
A
=
B
=
C
⇒
equilateral triangle
∴
Area
=
4
3
(
a
)
2
=
4
3
(
2
)
2
=
3