Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In a triangle ABC if |1&a&b 1&c&a 1&b&c| = 0, then sin2 A + sin2 B + sin2 C =
Q. In a triangle
A
BC
if
∣
∣
1
1
1
a
c
b
b
a
c
∣
∣
=
0
, then
sin
2
A
+
sin
2
B
+
sin
2
C
=
4665
201
COMEDK
COMEDK 2006
Determinants
Report Error
A
−
9
4
4%
B
4
9
33%
C
3
3
28%
D
1
34%
Solution:
We have
∣
∣
1
1
1
a
c
b
b
a
c
∣
∣
=
0
,
⇒
(
c
2
−
ba
)
−
a
(
c
−
a
)
+
b
(
b
−
c
)
=
0
⇒
c
2
−
ba
−
a
c
+
a
2
+
b
2
−
b
c
=
0
⇒
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
a
c
=
0
⇒
2
1
{(
a
−
b
)
2
+
(
b
−
c
)
2
+
(
c
−
a
)
2
}
=
0
which is possible only when
a
−
b
=
0
,
b
−
c
=
0
,
c
−
a
=
0
∴
a
=
b
=
c
Then,
∠
A
=
∠
B
=
∠
C
=
6
0
∘
sin
2
A
+
sin
2
B
+
sin
2
C
=
3
sin
2
6
0
∘
=
3
(
2
3
)
2
=
4
9